17.—Australites from northern Western Australia

by R. C. Horwitz¹ and D. R. Hudson¹

Manuscript received 19 October 1976; accepted 13 December 1976

Abstract

Recent discoveries of tektites in the Patterson Ranges and western Pilbara regions indicate that australites are more abundant in northern Western Australia than was previously believed. They include the compositional varieties of normal australites and philippinites, indochinites, and high-Mg tektites, which supports the existence of a NNW-SSE trending primary distribution pattern extending from the Philippines through northern Western Australia to southern Australia. The present distribution of tektites in Western Australia has been influenced by geomorphological features. This has resulted in numerous tektite occurrences in areas such as the Eastern Goldfields, where concentration has occurred in playas, and relative scarcity of tektites in areas of fast drainage and dissection, such as the Ashburton River valley. Areas of sand cover or areas of recent absence of tektites in northern Western Australia.

Introduction

Tektites are natural objects of silica-rich glass found in thousands on the surface of certain parts of the Earth. Baker (1959, p. 13) lists eight recognised true tektite provinces; those from Australia are designated australites and are believed to result from a single fall. Radiometric age data for australites are reviewed by Lovering *et al* (1972, p. 409) and the fall has been dated as about 700 000 years B.P. These authors also review (p. 408) and present new evidence concerning the relative age of the fall to geological and morphological features in the Quaternary.

The genesis of shapes and inner structures of australites is described and classified by Baker (1959). Their mode of preservation in presentday fields varies according to occurrences; i.e. well preserved in some scattered occurrences, to abraded pebbles in placer deposits and to dreikantered pebbles in desert areas of central Australia, such as the occurrences described by Johnson (1965) at Lake Wilson near the junction of the three states (W.A., S.A., N.T.). Australites have a strong mythological association for the Australian Aborigines of parts of Western Australia (R. C. Gould, pers. comm. 1965) and are found at aboriginal camp-sites and water holes, sometimes chipped and worked.

They occur most abundantly in the banks and on the floors of playas and internal drainage flats, where they are concentrated by drainage, in association with quartz pebbles and rocks of similar density.

Baker (1959, p. 31) estimates that 30 000 to 35 000 australites have been found. Cleverley and Dortch (1975, p. 243) refer to a "continental line of known occurrence" which they draw through about south of Geraldton to Lake MacKay and to south of Brisbane; this general northern boundary to the province (Figure 1) had been accepted following Baker (1959, p. 18), Cleverley and Dortch (1975) record that 23 occurrences of single australites exist north of this line in Western Australia; their paper discusses six australites found at archaeological sites of the eastern part of the Kimberley region.

Chapman *et al* (1964) studied specific gravities for tektites from Australia, Indonesia and Indo-China, grouping several tektite provinces under the heading Australasian tektites. Chapman and Scheiber (1969) established zones with varying chemical characteristics in Australasian tektites attributed by Chapman (1971) to a single fall erupted from Tycho (a Lunar Crater), with a spread on earth containing "streaks" of compositionally distinct tektites. This general spread differs from the distribution pattern accepted by Cleverley and Dortch (1975) in that it includes northern Australia, and in particular crosses northern Western Australia between about Exmouth and Derby.

This note is published to record that—(a) australite occurrences are more abundant in northern Western Australia than was previously believed; (b) in agreement with Chapman (1971) their distribution is best explained as primary in origin and related to NNW-SSE depositional streaks rather than to transport by man, as was believed by Cleverley and Dortch (1975); (c) to account for their relative absence from large areas of northern Western Australia; (d) to record some chemical compositions for northern Western Australian tektites and compare them to Chapman's model.

Australites in northern Western Australia

A minimum of nine australites, some intact, others worked, were found recently during exploration in the Patterson Ranges (Figure 1). A tektite was collected in 1974 near the mouth of the Sherlock River and some were found in the Teichmans-Pilbara townsite area (125 km ESE of Roebourne) during exploration in 1975 (M, J, Fitton, pers. comm. 1975). According to aboriginal stockmen, they occur in the Pilbara "north of Tom Price but are essentially absent from the Ashburton River valley". This river is conspicuous by its relative fast erosion compared to the areas of classical australite fields in the Eastern Goldfields.

The general dissection and fast drainage could have removed tektites and the surfaces on which they were deposited in most areas of the Pilbara and the Kimberley region of Western Australia and could contribute to their relative searcity in these areas.

Our observations in central Australia suggest that tektites get concentrated, as in the Eastern Goldfields and Lake Nabberu-Lake Carnegie regions, in small playas, resulting from natural damming on areas of bedrock (the Lake Wilson occurrence, described by Johnson 1965, is a typical occurrence. Here one of us (RCH) in 1965, found 53 small australites in 25 minutes over 77 m² marginal to the salt pan, in optimum conditions, with the back to the sun, as recom-

¹CSIRO, Division of Mineralogy, Floreat Park, Western Australia, 6014.

Journal of the Royal Society of Western Australia, Vol. 59, Part 4, June, 1977.

mended by Baker 1959, p. 29). They are, however, not found in such concentrated patches in playas in interdunal hollows where the catchment area is smaller. A combination of sand cover or erosion with removal to the ocean (or burial in coastal deposits) could be sufficient to produce the apparent absence of tektites in northern Western Australia.

Distribution of compositional groups of tektites

Chapman (1971) has described the geographic distribution of tektite compositional groups for the southeast Asia-Indonesia-Australia region. He recognised a serious of compositional "streaks" with a general NNW-SSE trend. The most prominent of these in Australia are the high-Ca streak which extends from Alice Springs to the west coast of Tasmania, and the high-Mg streak which curves its way from the northern Philippines through Borneo and Java to cross the Australian coast between Exmouth and Derby and then extends SE towards Adelaide. These high-Mg tektites together with a ubiquitous population of normal australitephilippinites (some of which approach the high-Ca group) comprise the described tektite popuation of Western Australia. With the exception

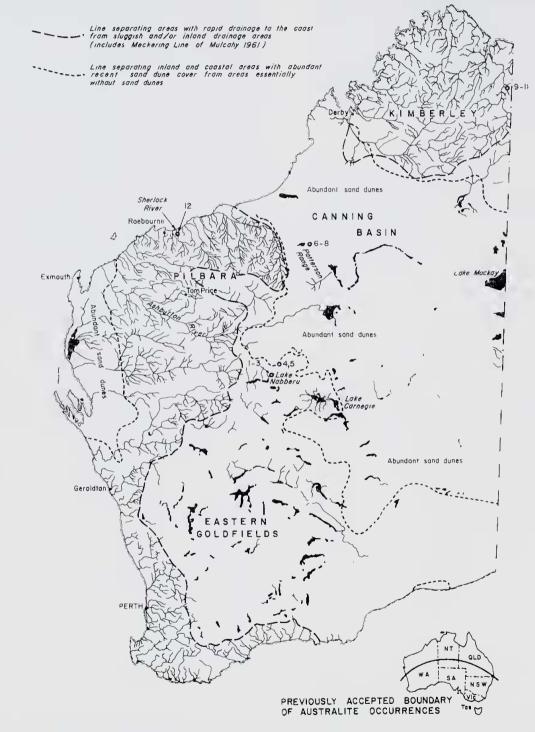


Figure 1.—Map of Western Australia showing geomorphological divisions that have influenced the present distribution of australites. The areas without fast erosion and without sand-dune cover equate broadly with Salinaland and Euclonia of Jutson (1950, p. 22). Nos. 1-12 indicate the location of the analysed tektites referred to in the text.

Journal of the Royal Society of Western Australia, Vol. 59, Part 4, June, 1977.

of one high-Mg tektite from the Pilbara, all previously analysed Australian tektites reported by Chapman (1971) come from below the line described by Cleverley and Dortch (1975).

Compositions of tektites

Twelve tektites from localities in central and northern Western Australia have been analysed using the electron microprobe. The analyses were made in order to compare the compositions of the new tektite occurrences with those predicted from Chapman's (1971) distribution model. All analyses were made on polished chips of tektites mounted in epoxy resin. Refractive indices were determined on the chips using a Raynor gem refractometer, and specific gravtiy determinations were made by hydrostatic weighing. Operating conditions for the electron microprobe are given in Table 1.

With the exception of analyses 7 and 8 the totals are generally low, and this combined with a low and variable sodium determination (probably due to the sodium loss under the focussed electron beam) renders the analyses semiquantitative. Nevertheless, the element ratios are believed to be significant, and enable a classification of the textites to be made (Figure 2) into the compositional groups of Chapman and Scheiber (1969).

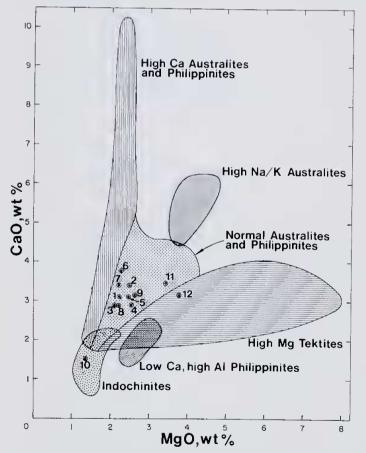


Figure 2.—Compositional grouping of tektites, based on the classification of Chapman and Scheiber (1969).

Analyses 1 to 9 are typical of the composition of "normal australites and philippinites" with MgO contents ranging from 2.13 to 2.57 weight percent. All three of the analysed tektites from the Lake Nabberu general area (including two tektites from the Canning Stock Route), three tektites from the Patterson Range and a tektite from the Kimberley district are thus of normal australite composition. Analysis 10 is of a tektite from the Kimberleys that falls within the "indochinite" compositional group, with low MgO and CaO contents of 1.27% and 1.50% respectively. Both analyses 11 (from Kimberleys) and 12 (from the Pilbara) are "high-Mg" tektites with MgO values of 3.38 and 3.73%.

The new analyses thus confirm the continuity of the high-Mg streak through the Pilbara-Canning Basin-Kimberley districts of Western Australia, and increase the known distribution of normal australite-philippinites to northern Western Australia.

The occurrence of an indochinite (analysis 10, from Miriwun) in the Kimberley district is puzzling. In Chapman's study this compositional group was found to be restricted to a small tear-shaped streak over southeast Asia. It is not inconsistent with Chapman's overall thesis that the indochinite distribution could extend to Australia, but the fact that the Miriwun tektite is a glass chip from an aboriginal site means that in this instance we cannot rule out the possibility of transport by man.

Acknowledgements.—The authors are pleased to acknowledge the generosity of Mr. P. Robson for the Sherlock tektite, Dr. D. Tyrrwhitt for samples and information on the Patterson Range tektites, and Mr. C. E. Dortch for tektites from aboriginal sites. Mr. K. Gayski made replicas of tektite specimens that were to be damaged during analysis; Mr. W. Cleverly provided information from an unpublished tektite study; Dr. C. R. M. Butt and Mr. T. D. Pearce provided data for the compilation of the map; Mr. C. R. Steel drafted the figures.

References

- Baker, G. (1959).—Tektites. Mem. nat. Mus. Vict. No. 23, 314 pp.
- Chapman, D. R. (1971).—Australasian tektite geographic pattern, crater and ray of origin, and theory of tektite events. J. Geophys. Res. 76: 6309-6338.
- Chapman, D. R., Larson, H. K., and Scheiber, L. C. (1964).—Population polygons of tektite specific gravity for various localities in Australasia. Geoch. Cosmoch. Acta. 28: 821-839.
- Chapman, D. R., and Scheiber, L. C. (1969).—Chemical investigation of Australasian tektites. J. Geophys. Res. 74: 6737-6776.
- Cleverly, W. H., and Dortch, C. E. (1975).—Australites in archaeological sites in the Ord Valley, W.A. Search 6: 242-243.
- Lovering, J. F., Mason, B., Williams, G. E., and McColl, D. H. (1972).—Stratigraphic evidence for the terrestrial age of australites. J. Geol. Soc. Australia 18: 409-418.
- Johnson, J. E. (1965).—Geological factors in tektite distribution, northwestern South Australia. Quarterly Geol. Notes, Geol. Surv. South Australia 14: 5-6.
- Jutson, J. T. (1950).—The physiography (geomorphology) of Western Australia. Geol. Surv. West. Australia, Bull. 95 (third edition) 366 pp.
- Mulcahy, M. J. (1961).—Landscapes, laterites and soils in south-western Australia, in Jennings, J. N., and Mabbutt, J. A. (Eds.), "Landform Studies from Australia and New Guinea" 211-230. Aust. Nat. Univ. Press, Canberra.

Journal of the Royal Society of Western Australia, Vol. 59, Part 4, June, 1977.

+	Indochinite	75-50 0-70 4-24 1-68 1-68 1-68 2-55 2-55 29-55	2·36 1·501	patite (PET),	е: 38 8:		
A verage Tektites†	Australite	7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7	2.45 1.513	JF), Fe/Fe (LIF), Si/Si (PET), K/Nepheline (PET), Ca/Apatite (PET), Analyses 7 and 8 by R.B.W. Vigers.	z n bubbles; 1·6 g. 6·0 g. 2·8 g. vana R.H.; 38 x 35 x 20 mm; 28 g. 1 ana R.H.; 38 x 35 x 20 mm; 28 g. 1 ana R.H.; 38 x 35 x 20 mm; 28 g. 1 1 x 8 x 3 mm; 0·2 g.		
A	High-Mg	70 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.	2 · 49 1 · 524		$\begin{array}{c} 1\cdot2 \\ 20\mu^{1}\\ \mu^{1}cs; \\ \mu^{1}cs; \\ \mu^{1}cs; \\ \mu^{1}cs; \\ \mu^{1}cs; \\ \mu^{2}cs; \\ $		
1	12	67 : 35 67 : 35 67 : 35 67 : 35 67 : 35 67 : 35 9 : 73 9 : 10 9 : 10	2.45 1.516				
	=	69.71 0.80 5.09 5.09 3.33 3.41 1.91 96.29	2.46 1.515	F), Si/S	(ie; 0.6 g s; 0.5 g . mmal austr mal austr x 12 mm s; 18×18 s; 18×18 haping eh mm; sma mm; sma mm an abc s g.		
	10	$\begin{array}{c} 75.58\\ 0.69\\ 10.27\\ 3.75\\ 0.05\\ 0.05\\ 0.18\\ 0.18\\ 0.18\\ 0.18\\ 0.18\\ 0.18\\ 0.523\end{array}$	$2.40 \\ 1.500$	^{ce} /Fe (L) es 7 and 1 aal australit bbles; noi tralite; 18 stralite; s stralite.	aal austral la australit bbles; noo tralite; 18 stralite; 18 stralite; s stralite; s stralite; s stralite; s alite. original s shinite fro e himh 0 - f himhon - f		
y' Tektites \$*	6	69.13 0.83 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	2.45		Abraded, elongate fragment of normal australite; 0.6 g. Abraded, rounded fragment; normal australite; 0.5 g. Abraded fragment; minor 20μ m bubbles; normal australite; Fragment from elliptical normal australite; 18×12 mm; rare Weathered hemispherical normal australite; 18×12 mm; $7 m$ Abraded, complete "button" normal australite; $18 \times 18 \times 7 m$ Abraded hemispherical normal australite. $18 \times 18 \times 7 m$ Abraded hemispherical normal australite. $18 \times 18 \times 7 m$ Simall greenish glass ehip of an indochinite from an aboriginal Chip of high-Mg tektue; $17 \times 10 \times 4 mm$; 0.8 g.		
	8	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-Ti/Ti (LIF), Mn/Mn (LIF), Focussed electron beam. Ana	the fragmes cd fragmes nt; minor elliptical n spherical to herieal no al australi ormal aust lass ehip c t ektue; J cd to acon		
Table 1 Chemical Analyses of Tektites n Australian Tektites*	7	$\begin{array}{c} 7\\ 7\\ 0.68\\ 0.11\\ 2.33\\ 3.33\\ 99.27\\ 99.27\\ \end{array}$		-Ti/Ti (LJF), Focussed elec	ed, elonga ed, roundi ed fragme ent from e ered hemisp idal norm idal norm greenish g f high-Mg lar, roundi		
7 <i>Themical</i> / Australia	9	70.03 70	$2.46 \\ 1.520$		Abraded Abraded Abradec Fragmer Weather Abradec Ellipsoid Elliptica Small gr Chip of Vesieula		
Western	S	69.39 69.39 69.30 70.60 70.60 70.60 70.60 70.70 70 70.70 70 70 70 70 70 70 70 70 70 70 70 70 7	2.46 1.518	cogram; Stands ec. counts, 19·3 Approx. Longitude East	120° 33′ 120° 33′ 120° 33′ 120° 48′ 120° 48′ 120° 48′ 122° 17′ 122° 17′ 122° 17′ 128° 45′ 128° 43′ 117° 37′		
	4	$\begin{array}{c} 68.53\\ 68.53\\ 64.73\\ 0.992\\ 2.39\\ 2.39\\ 2.20\\ 2$	2.46 1.520	20 sec. co Longi	120° 120° 120° 122° 122° 122° 128° 128° 17° 17°		
		67.79 67.79 67.79 67.79 67.79 7.92 7.93 7.92 7.92 7.92 7.92 7.92 7.92 7.92 7.92	2.44 1.523	Microprobe analyses—MAC probe; MAGIC IV correction program; Standard: Na/Nepheline (RAP), Mg/MgO (RAP), A1/A1 ₉ O ₃ (RAP). 20 sec. counts, 19·3kV. Data from Chapman and Scheiber (1969). <i>Data from Chapman and Scheiber</i> (1969). <i>Stription of analysed tektites</i> . SiRO Location Latitude South Longitude East	25° 33′ 25° 33′ 25° 33′ 25° 34′ 25° 34′ 21° 46′ 16° 18′ 16° 18′ 16° 18′ 20° 45′		
	7	$\begin{array}{c} 67.67\\ 67.67\\ 0.84\\ 0.84\\ 0.84\\ 0.86\\ 0.84\\ 0.86\\ 0.86\\ 0.56\\ 0.56\\ 0.56\\ 0.84\\ 0.8$	2.39 1.522	AGIC IV AI/AI _s O Lat			
	-	$\begin{array}{c} 68 \\ 68 \\ -78 \\ -104 \\ -13 \\ -131 \\ -256 \\ -26 $	2.44 1.514	obe; MJ (RAP), J er (1969),			
				-MAC pr. Mg/MgO and Scheibt <i>oktites</i> . Location			
	N			lyses—A tAP), A nian and <i>sed teki</i>	k Hill		
CSIRO No.				* Microprobe analyses—MAC Na/Nepheline (RAP), Mg/N † Data from Chapman and Sci- bescription of analysed tektites. CSIRO Locati	Nabberu Nabberu Nabberu Canning Patterson Patterson Miriwun Monsmont		
		SiO ³ TiO ³ FeO MnO MnO CaO CaO K ³ O K ³ O Total	SG RI	* Microp * Na/Net Data fro Descriptio CSIRO	- 2 6 4 9 9 7 8 6 0 1 1		

Journal of the Royal Society of Western Australia, Vol. 59, Part 4, June, 1977.

128